Mutant analysis reveals whirlin as a dynamic organizer in the growing hair cell stereocilium.

نویسندگان

  • Yoshiaki Kikkawa
  • Philomena Mburu
  • Sue Morse
  • Ryo Kominami
  • Stuart Townsend
  • Steve D M Brown
چکیده

Little is known of the molecular processes that lead to the growth of stereocilia on the surface of hair cells in the inner ear. The PDZ protein whirlin is known, by virtue of the whirler mutation, to be involved in the process of stereocilia elongation and actin polymerization in the sensory hair cells of mammals. We have investigated the function of whirlin and its putative interacting partner, myosin XVa, in the stereocilium using relevant mice mutants. We raised an antibody that detects the short isoform of the whirlin protein which has been demonstrated to rescue the stereocilia growth defect in the whirler mutant. We show that whirlin localizes at the tips of stereocilia. Expression of whirlin is dynamic during stereocilia growth, demonstrating an ordered appearance and fade-out across the stereocilia rows and revealing a novel molecular gradation of process traversing the stereocilia bundle. Fade-out of whirlin in inner hair cells precedes that of outer hair cells, consistent with the earlier maturation of inner hair cell stereocilia. In myosin XVa mutants in which stereocilia are shortened, whirlin expression in the stereocilia tips is stalled and fade-out is accelerated. In whirlin mutants, myosin XVa is still expressed in stereocilia, but its appearance at the stereocilia tip is delayed. The data indicate that whirlin expression is a critical and dynamic organizer for stereocilia elongation and actin polymerization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The deaf mouse mutant whirler suggests a role for whirlin in actin filament dynamics and stereocilia development

Stereocilia, finger-like projections forming the hair bundle on the apical surface of sensory hair cells in the cochlea, are responsible for mechanosensation and ultimately the perception of sound. The actin cytoskeleton of the stereocilia contains hundreds of tightly cross-linked parallel actin filaments in a paracrystalline array and it is vital for their function. Although several genes have...

متن کامل

Whirlin complexes with p55 at the stereocilia tip during hair cell development.

Hearing in mammals depends upon the proper development of actin-filled stereocilia at the hair cell surface in the inner ear. Whirlin, a PDZ domain-containing protein, is expressed at stereocilia tips and, by virtue of mutations in the whirlin gene, is known to play a key role in stereocilia development. We show that whirlin interacts with the membrane-associated guanylate kinase (MAGUK) protei...

متن کامل

Gelsolin Plays a Role in the Actin Polymerization Complex of Hair Cell Stereocilia

A complex of proteins scaffolded by the PDZ protein, whirlin, reside at the stereocilia tip and are critical for stereocilia development and elongation. We have shown that in outer hair cells (OHCs) whirlin is part of a larger complex involving the MAGUK protein, p55, and protein 4.1R. Whirlin interacts with p55 which is expressed exclusively in outer hair cells (OHC) in both the long stereocil...

متن کامل

The DFNB31 gene product whirlin connects to the Usher protein network in the cochlea and retina by direct association with USH2A and VLGR1.

Mutations in the DFNB31 gene encoding the PDZ scaffold protein whirlin are causative for hearing loss in man and mouse. Whirlin is known to be essential for the elongation process of the stereocilia of sensory hair cells in the inner ear, though its complete spatial and temporal expression patterns remained elusive. Here, we demonstrate that, in embryonic development, the gene is not only expre...

متن کامل

Alternative Splice Forms Influence Functions of Whirlin in Mechanosensory Hair Cell Stereocilia.

WHRN (DFNB31) mutations cause diverse hearing disorders: profound deafness (DFNB31) or variable hearing loss in Usher syndrome type II. The known role of WHRN in stereocilia elongation does not explain these different pathophysiologies. Using spontaneous and targeted Whrn mutants, we show that the major long (WHRN-L) and short (WHRN-S) isoforms of WHRN have distinct localizations within stereoc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 14 3  شماره 

صفحات  -

تاریخ انتشار 2005